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Vibration isolation is needed to protect avionics equipment from adverse aircraft
vibration environments. Passive isolation is the simplest means to achieve this goal. The
system used here consists of a circular steel ring with a lump mass on top and exposed to
base excitation. Sinusoidal and "ltered zero-mean Gaussian white noise are used to excite
the structure and the acceleration response spectra at the top of the ring are computed. An
experiment is performed to identify the natural frequencies and modal damping of the
circular ring. Comparison is made between the analytical and experimental results and good
agreement is observed. The ring response is also evaluated with a concentrated mass
attached to the top of the ring. The e!ectiveness of the ring in isolating the equipment from
base excitation is studied. The acceleration response spectra of a single-degree-of-freedom
(s.d.o.f.) system attached to the top of the ring are evaluated and the results are compared
with those exposed directly to the base excitation. It is shown that a properly designed ring
could e!ectively protect the avionics from possible damaging excitation levels.
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1. INTRODUCTION

Vibration control technology is used in many applications in order to protect equipment,
structures or mechanisms from undesirable vibration environments. The isolator design is
normally based on the degree of isolation desired and the frequency range of the
disturbance. Munjal [1] has organized vibration isolators into groups according to their
functions and Snowdon [2] described the use and function of various isolators. Vibration
isolation technology has been used in automobiles, aircraft, spacecraft and even buildings.
Applications in the automobile are geared primarily toward improving ride quality. Aircraft
design uses range from power plant, frictional damping of gas turbine blades [3] and active
engine mounts [4] to #utter suppression [5]. Agnes et al. [6] described the vibration
problems and solutions typical of "ghter aircraft. Space applications vary in scope from
structural control such as demonstrated by the INFLEX experiment [7] to microgravity
isolation [8]. Recently, application of vibration isolation to the Space Shuttle was studied
by Lee-Glauser et al. [9] and the Space Station vibration control was discussed by Ellison
et al. [10]. In the area of earthquake engineering, frictional base isolation systems have been
developed to protect large buildings [11}13].
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2 J. ELLISON E¹ A¸.
Equipment mounted in aircraft are exposed to a varied vibration environment depending
on the location of the installation and #ight condition as illustrated by Dreher [14].
A survey of environmental data measured in #ight such as vibration, acoustic, shock,
thermal, #utter and loads was compiled by Hain et al. [15] to de"ne a &&real-world'' aircraft
environment. One particular example is detailed in the vibration and acoustic
measurements report on the F-111A aircraft [16]. The vibration environment directly
in#uences the operation, performance and life expectancy of airborne equipment. To that
end, test techniques were developed to evaluate the avionics equipment endurance based on
the source of vibration, installation and response of the black box [17].

In order to reduce the environment at the equipment, use of vibration isolation has been
suggested. A number of passive and active vibration control techniques are available and
the choice depends on the degree of isolation that is desired or necessary [18}21]. Typical
passive isolators consist of a resilient element contained in a metallic-supporting frame.
Generally, the resilient element is an elastomer, air, steel spring, wire rope or metal mesh
[22]. Wire rope isolators are highly e!ective in controlling both shock and vibration [23].
Passive isolators are usually capable of up to 80 per cent isolation if the isolator natural
frequency is less than one-fourth of the lowest excitation frequency. Tuning of the isolator
may be necessary to achieve such high levels of isolation [24]. Active control is used when
additional protection is needed.

In this work, a passive isolation system is studied as a prelude to a combined
active/passive system for protecting an avionics box subjected to base excitation. The base
isolation system is composed of stainless-steel circular rings placed on the base corners of
the avionics box. This system has the capability of isolating the equipment in various
directions. In this initial study, the avionics box is modelled as a lumped mass and only
a single ring isolation system is considered. The earliest work performed on the free
vibration of a circular ring was reported by Hoppe [25]. Further work expanding the scope
of the ring vibration problem considered centerline extension [26] and shear deformation
and rotary inertia [27}30]. In most of the earlier works, the general ring vibration
properties were analyzed but no particular vibration isolation applications were studied.
Here, the ring is treated as a component of a passive isolation system and its performance in
protecting the equipment against the adverse vibration environment is evaluated.

An experiment is also conducted to evaluate the vibration characteristics of a typical
circular steel ring for comparison with the analysis. The experiment consisted of a circular
steel ring mounted on top of a small electrodynamic shaker with the response measured by
an accelerometer. The test is performed with and without an attached mass on top of the
ring. These data are then used to verify the computational model.

Sinusoidal and random base excitations are considered and the peak responses of the
ring and attached single-degree-of-freedom (s.d.o.f.) systems are evaluated. It is shown that
the ring could e!ectively reduce the peak acceleration transmitted to the avionics
equipment.

2. MODEL FORMULATION

Passive base isolation of an avionics box with the use of circular, stainless-steel ring
supports attached to each corner of the equipment is shown schematically in Figure 1. In
this study, however, we are concerned with the in-plane motion of a single ring. We also
assume that the avionics box behaves as is a rigid mass. The basic con"guration of this
model, which consists of a thin stainless-steel ring rigidly attached to a base structure and
a concentrated mass located at the top, is shown in Figure 2.
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Figure 1. Circular ring isolation system for generic avionics equipment.

Figure 2. Circular ring structure.

PASSIVE VIBRATION CONTROL 3
Details of the derivation of Love's equation governing the vibration of a circular ring
with a concentrated mass is outlined in Appendix A. Accordingly, the governing equations
of motion for the tangential and the normal components of the ring displacement are
given as
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4 J. ELLISON E¹ A¸.
where w
a
is the tangential de#ection, u

a
is the radial de#ection, h is the angle measured from

the vertical, t is time, EI represents the bending sti!ness, a is the ring radius, q
w

is an external
tangential force per unit length and q

u
is an external normal force per unit length. The mass

distribution of the ring (including the concentrated mass located at the top of the ring) per
unit length is given as [31]

Mo"oA#

m
A

2na
d (h!n), (3)

where o is the mass density of the ring, A is the cross-sectional area, m
A

is the mass of the
avionics box represented by a concentrated mass located at h"n and d ( ) denotes the Dirac
delta function.

3. FREE VIBRATION OF A RING

The natural frequencies of the ring are obtained by solving the homogenous form of
equation (1) (in the absence of the concentrated mass at the top of the ring). Assuming
a solution of the form [28]

w
a
(h, t)"=(h) e*ut, (4)

the resulting equation may be restated as
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dh6
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The appropriate boundary conditions are
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at h"0 and at h"2n. (7)

The solution to equation (5) is given by

=(h)"
6
+
j/1

C
j
ejjh, (8)

where the C
j
's are found using the boundary conditions given by equation (7) and the j

j
's

are the roots of the dispersion equation given as

j6#2j4#j2(1!X2)#X2"0. (9)
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TABLE 1

Ring Properties

Modulus, E 199]102 N/m2
The Poisson ratio, k 0)3
Radius, a 0)07104 m
Thickness, h 5)1]10~4 m
Width, b 0)03165 m
Top mass, m 0)450 kg
Density, o 7916 kg/m3

TABLE 2

Analytical ring natural frequencies and damping values

Mode 1 2 3 4 5 6

f
j
(Hz) 13)75 37)50 78)75 133)75 202)50 282)50

u
j
(rad/s) 86)39 235)61 494)80 840)37 1272)34 1775)00
X

j
0)56642 1)59520 3)38459 5)75492 8)68973 12)13275

f
j

0)036 0)040 0)025 0)018 0)025 0)019
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When the boundary conditions are applied to the solution given by equation (8), a group of
six simultaneous equations are obtained. In matrix form, these equations are expressed as
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A non-trivial solution for the C
j
exist only if the determinant of the coe$cient matrix in

equation (10) is zero.
An iterative procedure is used to "nd the natural frequencies and the corresponding

modal coe$cients. An initial guess for the frequency (X) is made and then the j
j
's are

computed from equation (9). Using these j
j
's, the determinant of the coe$cient matrix (10)

is evaluated. If the determinant does not become zero, then the initial frequency guess is
adjusted and the process is repeated until the determinant approaches zero. The mode
shape coe$cients, C

i
, are then evaluated for each natural frequency using equation (10) and

choosing C
6
"1. The modal coe$cients are then normalized for each mode such that

S
6
+
j/1

C2
j
"1. (11)

Using the dimensions and physical properties for the circular ring given in Table 1,
equations (9) and (10) are evaluated for X, u

j
and j

j
. The modal frequencies and

corresponding X
j
's are listed in Table 2. Due to the complex form of the j

j
's obtained,
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TABLE 3

Ring mode shape coe.cients and parameters

Mode i a
i

b
i

C
i

Mode i a
i

b
i

C
i

1 0)00 1)30876 !0)10096 1 0)00 1)68930 !0)11704
2 0)38027 0)53683 !0)14731 2 0)82800 0)50863 !0)07916

1 3 !0)38027 0)53683 !0)01967 2 3 !0)82800 0)50863 0)00077
4 0)03524 4 !0)00245
5 0)12062 5 0)11626
6 0)42328 6 0)45340

1 0)00 2)17382 !0)09447 1 1)99490 0)00 0)79760E-6
2 1)20824 0)31161 !0)05741 2 1)07927 0)00 !0)22151

3 3 !1)2082 0)31161 0)00033 4 3 0)00 2)67291 !0)00033
4 0)00018 4 0)29688
5 0)09413 5 !0)07503
6 0)76404 6 !0)04531

1 2)65515 0)00 !0)65433E-8 1 3)24700 0)00 0)11063E-9
2 1)02932 0)00 !0)11509 2 1)01428 0)00 !0)08019

5 3 0)00 3)17952 0)00027 6 3 0)00 3)68399 !0)00022
4 0)17655 4 0)13268
5 !0)06173 5 !0)05225
6 !0)03904 6 !0)03409
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equation (8) may be stated as

=
k
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(12)

The mode shape coe$cients and parameters for equation (12) that were found
using the frequencies and j

j
's from equations (9) and (10) are listed in Table 3 and the

corresponding mode shapes are shown in Figure 3. The mode shapes are categorized
according to their motion at the top of the ring (h"n), either lateral or vertical. The
odd-numbered modes exhibit predominantly side-to-side motion and are thereby called
lateral modes. Whereas the even-numbered modes have mostly an up and down response
and therefore are labelled vertical modes. Only the "rst six modes are shown and used in the
calculations.

4. RING RESPONSE DUE TO BASE EXCITATION

In this section, the response of a circular ring, shown in Figure 2, subjected to base
excitation is analyzed. The absolute motion of the ring is assumed to be given as

w
a
(h, t)"w (h, t)!y (t) cos h#z(t) sin h (13)
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Figure 3. Circular ring mode shapes.

PASSIVE VIBRATION CONTROL 7
and

u
a
(h, t)"u(h, t)!y (t) sin h!z(t) cos h, (14)

where u and w are relative, normal and tangential, ring displacements and y and z are base
displacements.

The motion of the ring relative to the base is assumed to be given by

w(h, t)"+
k

g
k
(t)=

k
(h) (15)

and

u (h, t)"+
k

g
k
(t);

k
(h). (16)
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8 J. ELLISON E¹ A¸.
Substituting equations (3), (13) and (15) into equation (1) yields
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Using the relation given by equation (5) in equation (17) and simplifying yields
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Multiplying equation (18) by a normal mode,=
p
, integrate around the ring and apply the

orthogonality condition given by

P =p A=k
!
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k

dh2 B dh"0, kOp, (19)

we "nd
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y( (t)#B

pz
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where

f
p
"

c
2oAu

p

(21)

is the modal damping coe$cient, c is an equivalent viscous damping factor introduced into
equation (20), g

p
is the modal participation factor, u

p
is the pth natural frequency, z( (t) is the

vertical base excitation and y( (t) is the lateral base excitation. The external pressure "eld is
given by

q
w
"0 and q

u
"

m
A

g

2na
d (h!n), (22)

where m
A

g is the static weight at the top of the ring.
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PASSIVE VIBRATION CONTROL 9
The coe$cients in equation (20) are then de"ned as follows:
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where

N
p
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p
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p
(h)

dh2
=

p
(h)B dh (27)

is the norm of the pth modal amplitude.
The equations given in equation (20) are coupled since K

p
depends on +

k
gK
k
(t). Here,

a Gaussian reduction scheme is used to solve the equations simultaneously for the modal
participation factors in the numerical simulation.

5. EXCITATIONS

Both sinusoidal and random base excitations are used to evaluate the performance of the
passive vibration isolation system. Sinusoidal base accelerations applied are given by

y( (t)">
a
sin(u

e
t) and z( (t)"Z

a
sin(u

%
t), (28)

where >
a
and Z

a
are the amplitudes, u

e
is the excitation frequency and t is time. The base

accelerations, y( (t) and z( (t), are used in the following analyses.
The random excitation being used is modelled after NASA Ames/Dryden Flight

Research Facility (ADFRF) process speci"cation No. 21-2 for environmental testing of
electronic and electromechanical equipment [32], as shown in Figure 4. The random
excitation model uses the frequency sampling method to design a non-recursive "nite
impulse response (FIR) "lter. As illustrated in Figure 5, zero-mean Gaussian white noise,
e(t), is input to the "lter (with impulse response h (t)), and the output being the random
excitation, y( (t) or z( (t). That is,

y( (t)"P
t

0

h (t!q) e
y
(q) dq and z( (t)"P

t

0

h(t!q) e
z
(q) dq. (29)

The mean and autocorrelation of the stationary, Gaussian white-noise processes, e
y
(t) and

e
z
(t), used as the input are given as
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Figure 4. NASA ADFRF process speci"cation No. 21-2.

Figure 5. Random excitation model.

10 J. ELLISON E¹ A¸.
where the angular brackets, &S ) T', represent ensemble averaging and S
oy

and S
oz

are the
constant power spectral intensities. The spectral intensity of the white-noise excitations for
the y and z directions are assumed to be given as

S
oy
"0)0043 g2 s, S

oz
"0)0218 g2 s. (31)

The value for S
oz
was estimated so that the spectral density of the vertical random excitation

would "t that of the NASA ADFRF process speci"cation. The lateral value was taken to be
one-"fth the vertical value since the lateral excitation intensity is usually much lower than
that of the vertical excitation in aircraft. The impulse response, h (t), is obtained by inverse
Fourier transform given as

h(t)"I~1[H(k)], (32)
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Figure 6. Impulse response function.

PASSIVE VIBRATION CONTROL 11
where H(k) is the system function. The system function is a function of the acceleration
power spectral density function represented in Figure 4 and given by

DH(k)D"S
N

2Dt
GI (k), (33)

where N is the number of samples, Dt is the spacing between time samples and GI (k) is the
power spectral density function.

To design a FIR "lter with the frequency response shown in Figure 4, the frequency
response is sampled N times at intervals of k F

s
/N, k"0, 1, 2, N!1, where F

s
is the

sampling frequency. Since these values are related to the Fourier transform of the "lter
impulse response, the "lter coe$cients h (n) [,h(nDt)] are found using an inverse Fourier
transform of the frequency samples from equation (33). For linear phase "lters with
a positive symmetrical impulse response, it is possible to rewrite the inverse Fourier
transform such that the FIR "lter coe$cients are given by [33]

h (n)"
1

N C
N@2~1

+
k/1

2 DH(k)D cos D[2nk(n!a)/N] D#H(0)D , (34)

where H (k) are the frequency samples, n"0,2, N!1 and a"(N!1)/2. Here Dt"0)1 s
and N"1024 samples are used. The impulse response of the above FIR "lter is shown in
Figure 6.

The fast Fourier transform (FFT) is used to transform the "lter coe$cients and white
noise to the frequency domain. They are multiplied together and the result is inverse
transformed using the inverse FFT back to the time domain. This produces time samples
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Figure 7. Sample excitation time history.

Figure 8. Power spectral density for an ensemble of 1000 time samples.
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PASSIVE VIBRATION CONTROL 13
representative of the power spectral density shown in Figure 4. A sample simulated
excitation time history is plotted in Figure 7. To verify that the procedure truly generates
the appropriate frequency response, an ensemble of 1000 sample time histories were
generated, transformed to the frequency domain and the averaged spectrum, (1/¹) Dz(M (u)D2,
was evaluated. The resulting response power spectral density is shown in Figure 8.
Comparing Figures 4 and 8, it is observed that the "lter produces time samples
representative of the desired excitation spectrum.

6. EXPERIMENT

The purpose of the experiment was to measure the natural frequencies and damping of
a circular steel ring for comparison with the analytical results. The experimental set-up is
shown schematically in Figure 9. The dimensions and physical properties of the circular
ring that was used in the experiment are the same as those listed in Table 1 and used in the
analysis. Two 5-mm holes were drilled in the ring, one at the top and one at the bottom. The
ring was bolted directly to the shaker armature through the bottom hole for both the
vertical and lateral vibration testing. For rings with the concentrated mass test conditions,
a steel weight was bolted through the hole at the top of the ring. Accelerometer mounting
wax was used to hold the accelerometer onto the ring. The accelerometer was mounted on
top of the ring for measuring vertical modes of vibration and on the side of the ring for
measuring lateral modes. Five test conditions were evaluated for various concentrated
masses. The concentrated masses used were 0, 130, 250, 430 and 780 g. (The accelerometer
mass was negligibly small, and hence there was no need for a correction.)

The test system that was used to perform the experiment was entirely PC based. An
A}D/D}A interface on the PC allowed the computer to output the shaker drive signal and
monitor the system response channels. Software was used for FFT processing and vibration
analysis. Broadband random excitation from 0 to 2000 Hz was generated by the computer
and used to shake the ring vertically. A force transducer was installed between the ring and
shaker rod in order to measure the input excitation. An accelerometer was mounted on top
of the ring to measure the vertical acceleration. The accelerometer and force data were
recorded using the PC-based data acquisition system. Twenty-"ve samples were acquired
and averaged to produce the acceleration frequency response function (AFRF) for the
vertical excitation for each test condition. Acceleration frequency response function (AFRF)
is de"ned as the amplitude of the acceleration power spectral density normalized by the
excitation intensity.

The lateral modes were measured using impact excitation. A small hammer was used to
impact the side of the ring. An accelerometer mounted on the opposite side of the ring
Figure 9. Experiment set-up for circular ring vibration.
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TABLE 4

Experimental ring natural frequencies and damping values

Mass (g) Mode 1 2 3 4 5 6

0 u
j

86)394 229)336 507)367 854)513 1253)49 1790)71
f
j

0)036 0)040 0)025 0)018 0)025 0)019
130 u

j
31)416 83)252

f
j

0)056 0)057
250 u

j
21)991 69)115

f
j

0)112 0)036
430 u

j
18)850 53)407

f
j

0)120 0)053
780 u

j
12)566 39)270

f
j

0)091 0)060
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measured the ring response due to the impact. The response was recorded on the PC. Ten
impact samples were measured and averaged and used to compute the power spectra for the
lateral vibration data for each test condition. The experimental FRF's and power spectra
were curve "t at each resonance frequency and the half-power bandwidth method was used
to evaluate the modal damping. For a ring with no concentrated mass, the natural
frequency and modal damping for the "rst six modes of the ring are listed in Table 4. For
each of the test conditions with the concentrated mass attached to the ring, the two lowest
modes are listed. Comparing Tables 2 and 4, it is observed that the computed natural
frequencies are in close agreement with the experimental ones.

7. RESULTS

Computer simulation of the ring response is performed by solving equations (13)}(16)
and equation (20) subjected to random base excitations. A typical circular ring with the
dimensions and physical properties given in Table 1 is analyzed. The ring fundamental
frequency is 13)75 Hz with a damping ratio of 0)036. Two ring con"gurations, one without
any concentrated mass and one with a 0)45 kg mass added on top of the ring, are examined.
The ring de#ection is given by

u"u
s
#u

e
, (35)

where u
s
is the static de#ection under the weight and u

e
is the de#ection relative to the static

equilibrium. In this section, the vibration of the ring about the static equilibrium is studied.
The static de#ection, u

s
, results from the gravitational force term given by equation (24). To

achieve this in the numerical simulation, equation (20) is evaluated in the absence of base
excitation, i.e.,

g
p
"

F
p

u2
p

. (36)

This equation is evaluated and the modal participation factors are recorded. These values
then establish the static equilibrium position of the ring due to the concentrated mass and
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can be calculated using equations (2), (12), (16) and

u
s
(h, t)"+

p

g
p
(t);

p
(h). (37)

Subsequent analyses are then conducted using this static equilibrium position as a starting
point. The stored values are used as initial conditions for solving equation (20) under base
excitation.

Using both sinusoidal and random excitations, the acceleration at the top of the ring and
the response of a (s.d.o.f.) system attached to the top of the ring are evaluated. The peak
responses of the ring are computed for a range of ring frequencies. To assess the e!ectiveness
of the base isolation at the point on the ring where the equipment is attached, acceleration
response spectra are evaluated. The lateral and vertical acceleration response spectra are,
respectively, de"ned as

S
a
(u

a
, f

a
)"max

t
MDw(

a
(n, t)DN (38)

and

S
a
(u

a
, f

a
)"max

t
MDu(

a
(n, t)DN. (39)

For random excitation, the mean, the standard deviation, the absolute maximum and the
absolute minimum acceleration are de"ned, respectively, as

aN (u
a
, f

a
)"SS

a
(u

a
, f

a
)T, (40)

p
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(u

a
, f
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)"S(S

a
(u

a
, f
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)!aN )2T1@2, (41)

a
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, f
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)"maxMS
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(u

a
, f

a
)N, (42)

a
min

(u
a
, f

a
)"minMS

a
(u

a
, f

a
)N. (43)

It should be noted that the absolute maximum and minimum accelerations, which represent
upper and lower bounds on the simulation results, are sample dependent.

8. COMPARISON OF NUMERICAL AND EXPERIMENTAL RESULTS

8.1. RING WITHOUT CONCENTRATED MASS

In order to verify the validity of the numerical model, the analytical ring response is
computed in the same manner as was done in the experiment. Random excitation given by
equation (29) is used to excite the ring in both lateral and vertical directions. The response at
the top of the ring is computed and used with the input base excitation to generate vertical
and lateral acceleration frequency response functions as shown in Figures 10 and 11
respectively. The experimental acceleration frequency response functions are also plotted in
these "gures for comparison. As noted before, the acceleration frequency response functions
are de"ned as the amplitude of the acceleration power spectral density normalized by the
intensity of the excitation. The exception is the experimental result for the lateral excitation
shown in Figure 11, which was obtained by an impact hammer and was not normalized.
(NN denotes &&not normalized'' in this "gure.) The peaks in each frequency response
function correspond to the natural frequencies of the ring as listed in Table 2. The damping
JSVI=20003116=Ravi=VVC



Figure 10. Comparison of analytical and experimental acceleration frequency response functions for the
circular steel ring for vertical excitation.

16 J. ELLISON E¹ A¸.
values that were calculated from the experimental data as listed in Table 4 were used in the
analytical model.

Figures 10 and 11 show reasonable general agreement between the experimental and the
numerical acceleration frequency response functions. However, the peak value amplitudes
at the resonant frequencies are not in agreement. Part of the di!erences in peak amplitudes
may be due to the frequency response of the accelerometer used. The accelerometer is rated
for an operating range of 10}10 000 Hz. The accelerometer frequency response is levelled
down to about 100 Hz. However, the response starts to roll o! below 100 Hz and the
accelerometer is unusable below about 10 Hz. Therefore, the amplitude of the experimental
resonant frequencies below 100 Hz are attenuated for both the vertical and lateral results.
Additional experimental inaccuracy and the slight error in the estimate of damping
coe$cient could also be the cause of the observed discrepancy in the higher modes. It
should be noted here that the peak response amplitudes of the lateral vibration results
should not be compared directly. As was noted before, the experimental results were
acquired with the impact excitation and the corresponding acceleration frequency function
was not normalized. The numerical results, however, were generated with a random white-
noise excitation and the corresponding response power spectral density was normalized by
the intensity of the excitation for evaluating the acceleration frequency response function.
This was due to the experimental shaker limitation that was not able to generate white-
noise excitation in the lateral direction.
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Figure 11. Comparison of analytical acceleration frequency response function and experimental power spectral
density for the circular steel ring for lateral excitation.
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8.2. RING WITH RIGID AVIONICS

Next, the circular ring with a 0)45 kg rigid avionics mass attached to its top is
analyzed. The ring response is computed in the same manner as outlined above for
Figures 10 and 11. Random excitation given by equation (29) is used to excite the ring in
both the lateral and vertical directions. Vertical and lateral acceleration frequency response
functions are plotted in Figures 12 and 13. The corresponding experimental frequency
response functions are also shown in these "gures for comparison. The ring geometry
is the same as that used earlier with the exception of the additional mass. Comparing
Figures 10 and 11 with Figures 12 and 13, it is noticed that the ring natural frequencies are
lower with the additional mass on top as expected. Both experimental and numerical results
indicate a decrease in the natural frequencies with fairly close agreement between the two.
The observed variations in the resonant frequency peak amplitudes are due to
accelerometer frequency response characteristics and for the lateral case, are also due to the
di!erent methods of excitation used. Numerical results for the lateral case are produced
with random excitation whereas impact excitation is used in the experiment. Figures 12 and
13 show qualitative agreement in overall trends between the experimental and numerical
data.
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Figure 12. Comparison of analytical and experimental acceleration frequency response functions for the
circular steel ring with a 0)45 kg concentrated mass under vertical random base excitation.

18 J. ELLISON E¹ A¸.
8.3. AVIONICS BOX UNDER SINUSOIDAL EXCITATION

In this section, responses of a s.d.o.f. avionics box subject to horizontal}vertical
sinusoidal base excitation with and without a ring isolation system are studied. Figure 14
illustrates the system con"gurations considered. Sinusoidal base excitation, as given by
equation (28), is used. The amplitude, A, of the input excitation is 0)01 g in the vertical
direction and 0)002 g in the lateral direction. The excitation frequency, f

e
, is 400 Hz. The

peak responses of the system are computed for a range of avionics equipment system
frequencies from 50 to 500 Hz. Table 1 lists the physical properties of the ring used in the
analysis with the natural frequencies that appear in Table 2. The interaction of the avionics
system and the ring is neglected in the following analyses since it is assumed that the
avionics system is rigidly attached to the ring.

The vertical and lateral acceleration response spectra of the avionics system are plotted in
Figures 15 and 16. The cases of unprotected avionics and avionics with the ring are shown.
For the avionics with the ring, two di!erent responses are shown. No interaction implies
that there was no coupling between the avionics and ring degrees of freedom. The response
at the top of the ring was computed and used as excitation to the s.d.o.f. avionics box. The
rigid mass response implies that the avionics box is treated as a rigid mass of 0)45 kg. Both
"gures show a peak at the excitation frequency of 400 Hz due to the resonance of the s.d.o.f.
system with the excitation frequency. The ring natural frequencies given in Table 2 are not
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Figure 13. Comparison of analytical acceleration frequency response function and experimental power spectral
density for the circular steel ring with a 0)45 kg concentrated mass under lateral random base excitation.

Figure 14. Single-degree-of-freedom system con"gurations: (a) s.d.o.f. system exposed to random excitation
without ring, (b) s.d.o.f. system exposed to transmitted vibration at top of ring.

PASSIVE VIBRATION CONTROL 19
excited by the sinusoidal excitation as shown by the plots. For the vertical direction, there is
a 50 per cent decrease in the transmitted acceleration to the avionics system on top of the
ring with no interaction mass and an order of magnitude decrease for the rigid mass case as
compared to the avionics system exposed directly to the sinusoidal excitation, unprotected
avionics. Similar decreases are seen for the transmitted acceleration in the lateral direction.
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Figure 15. Comparison of vertical response spectra of an avionics system with and without the circular ring
under sinusoidal base excitation: **, unprotected avionics; } } }, avionics with ring (no interaction); **,
avionics with ring (rigid mass).

Figure 16. Comparison of lateral response spectra of an avionics system with and without the circular ring
under sinusoidal base excitation: **, unprotected avionics; } } }, avionics with ring (no interaction); **,
avionics with ring (rigid mass).

20 J. ELLISON E¹ A¸.
There is an order of magnitude decrease for the avionics system on the ring with no
interaction mass and a one and a half order of magnitude decrease when the avionics on top
of the ring is treated as a rigid mass. Clearly, the ring provides signi"cant passive isolation
for the avionics box.
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8.4. RING RESPONSE TO RANDOM EXCITATION

For the case of a single ring (in the absence of a concentrated attached mass), the vertical
ring response spectra for the top of the ring are plotted versus ring frequency in Figure 17
and the lateral response spectra are plotted in Figure 18. The peak responses for an
ensemble of 100 samples are computed using the random excitation given by equation (29)
and the results are compiled and the statistical response spectra are evaluated from
equations (38) to (43). The input power spectra density level is 0)04 g2/Hz up to 150 Hz and
then increases at 4 DB/Oct to 0)10 g2/Hz at 300 Hz as shown in Figures 4 and 8. Six modes
are included in the numerical ring model. The mean vertical acceleration spectrum starts at
about 0)002 g for a ring frequency of 15 Hz and increases over the frequency range plotted
leveling o! to about 0)025 g at a frequency of about 150 Hz. The mean lateral vibration
starts o! at about 0)0003 g at the lower frequencies (about 5 Hz) and steadily increases to
about 0)003 g at a frequency of 60 Hz. This increase in acceleration is a result of the higher
frequency modes responding to the increasing excitation levels The maximum and
minimum acceleration levels are an extreme upper and lower bound, respectively, for the
computed vibration spectrum.

To evaluate the e!ects of damping on ring performance, the vertical ring acceleration
response spectra as a function of structural damping are calculated and plotted in Figure 19.
The other ring parameters are as given in Table 1. The results are as expected, indicating
a decrease in transmitted vibration with an increase in structural damping. It is observed
from the graph that a damping value of about 6 per cent provides satisfactory isolation. For
a passive ring system having 6 per cent damping as compared to that with a 2 per cent
Figure 17. Statistical vertical response spectra of the circular ring without concentrated mass under random
base excitation: #- -#, a

max
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Figure 18. Statistical lateral response spectra of the circular ring without concentrated mass under random base
excitation: #- -#, a
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Figure 19. Statistical vertical response spectra of the circular ring as a function of damping under random base
excitation: #- -#, a
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damping, there is a 36 per cent decrease in transmitted excitation. Whereas another 4 per
cent increase in damping above 6 per cent only provides an additional 14 per cent decrease
in the transmitted vibration. Increasing the damping in the ring system above 10 per cent
provides little if any improvement in the vibration environment at the top of the ring.

8.5. AVIONICS UNDER RANDOM EXCITATION

For the random base excitation, comparison is made between the acceleration responses
of the avionics system mounted on top of the ring (treated as a rigid 0)45 kg concentrated
mass) and the unprotected avionics system. The system response is computed for a range of
avionics system frequencies from 50 to 500 Hz. The sensitivity to variations in the ring
damping ratio on the response spectra is also examined. The resulting response spectra are
plotted versus the avionics system frequency. As was noted before, the avionics system is
treated as a rigid concentrated mass attached to the ring and the interaction between the
avionics system and the ring is neglected.

The vertical and lateral avionics system acceleration response spectra with and without
the ring are plotted in Figures 20 and 21. Comparing the response of the isolated avionics to
that of the unprotected avionics, the transmitted vibration to the avionics system is cut in
half using the ring as a passive isolator. When the avionics system is rigidly mounted on top
of the ring, the acceleration levels are magni"ed at the ring natural frequencies as compared
to the rest of the acceleration response. However, these levels are still considerably lower
than the acceleration levels for the unprotected system. Even the maximum calculated
acceleration levels of the isolated system are less than half the unprotected avionics
Figure 20. Comparison of vertical response spectra of avionics system with and without the circular ring under
random base excitation*rigid mass avionics model: #- -#, a
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Figure 21. Comparison of lateral response spectra of avionics system with and without the circular ring under
random base excitation*rigid mass avionics model: #- -#, a
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Figure 22. Vertical response spectra of an isolated avionics system with circular ring damping ratio variations
as compared to unprotected avionics under random base excitation: Isolated avionics - - - -, !50%; } } }, default
damping; **, #100%.
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Figure 23. Lateral response spectra of an isolated avionics system with circular ring damping ratio variations as
compared to unprotected avionics under random base excitation: Isolated avionics - - - -, !50%; } } }, default
damping; **, #100%.
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minimum response. In the lateral direction, the ring isolates the avionics system by at least
an order of magnitude over the entire frequency range. The isolated avionics response again
is greater at the ring resonant frequencies as compared to the rest of the spectrum. The ring
performs better in the lateral direction by not transmitting the lateral excitation into the
avionics system as readily as the vertical excitation.

The peak acceleration response of the avionics system rigidly mounted to the ring is
calculated for several damping ratios and plotted as a function of avionics frequency in
Figures 22 and 23. These curves are compared to the response of the unprotected avionics
system. The default damping values referred to in the "gures are those listed in Table 2 with
the 100% value being twice what is listed and !50% being half the listed value. As shown
in both "gures, the peak acceleration decreases with increasing structural damping. Again,
the results are as expected. Increasing the ring damping increases the isolation e!ectiveness
of the passive ring element and the peak acceleration levels for all damping values are less
than the levels for the unprotected system.

9. CONCLUSIONS

An analytical model of a stainless-steel circular ring for the purpose of base isolation of
avionics equipment is formulated. This model is used to evaluate the circular ring response
characteristics subject to base excitation. Filtered zero-mean Gaussian white noise was
tuned to match the NASA process speci"cation No. 21-2 and is used for the random
excitation. Peak acceleration response spectra are evaluated as a function of avionics
frequency and ring structural damping. The ring is evaluated as an passive isolator for
JSVI=20003116=Ravi=VVC
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a rigidly mounted avionics system. This system is compared to the response of the
unprotected system. An experiment was performed to measure the modal response of the
thin circular steel ring mounted on top of an electrodynamic shaker. The analytical ring
responses closely match the experimental results. The peak avionics system acceleration
spectra indicate that the ring is an e!ective isolator in both the vertical and lateral
directions., the ring isolates the avionics system at all frequencies.

The sensitivity of the ring response and avionics system response to variations in ring
parameters and additional mass on top of the ring is examined. With no added mass at the
top of the ring, the peak ring acceleration increases with increasing excitation. Changes in
structural damping produce expected results in peak ring acceleration; decreasing
transmitted acceleration with increasing damping factor. Overall, the ring and avionics
system responses were insensitive to small variations in ring properties [34].

It should be emphasized that the presented analysis was based on the in-plane motion of
the ring. When several rings with di!erent orientations as shown in Figure 1 are used,
out-of-plane motion of rings will a!ect their vibration isolation performance. Consideration
of the out-of-plane motion of the ring, however, is left for a future study.
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APPENDIX A

Love's equations of motion governing the vibrations of a circular ring in its plane of
curvature due to an applied pressure "eld are [34]
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In most applications, the extension of the neutral surface of the ring is negligible and the
inextensional approximation may be used, i.e.,

Lw(h, t)

Lh
"!u(h, t). (A3)
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The ring equations of motion need to be expressed in force and moment resultant form in
order to apply the inextensional approximation. These equations are as follows:
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where Nhh is the force and Mhh is the bending moment. Solving equation (A5) for Nhh and
substituting into equation (A4) gives
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The resultant moment for the ring based on the tangential and normal displacements has
the form
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Using the inextensional approximation, equation (A7) can be expressed in terms of the
tangential displacement as
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or in terms of the normal displacement as
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Substituting equations (A3) and (A8) into equation (A6) gives the equation for the tangential
component of the ring motion as follows:
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The normal component of the ring motion is obtained from equations (A3) and (A10).
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